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Monte Carlo calculations of the elastic moduli and pressure-volume-
temperature equation of state for hexahydro-1,3,5-trinitro-1,3,5-triazine

Thomas D. Sewella)

Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Carl M. Bennett
Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74078

~Received 27 September 1999; accepted for publication 10 February 2000!

Isothermal-isobaric Monte Carlo calculations were used to obtain predictions of the elastic
coefficients and derived engineering moduli and Poisson ratios for crystalline
hexahydro-1,3,5-trinitro-1,3,5-triazine~RDX!. The elastic coefficients were computed using the
strain fluctuation formula due to Rahman and Parrinello@J. Chem. Phys.76, 2662 ~1982!#.
Calculations were performed as a function of temperature (218 K<T<333 K) and hydrostatic
pressure (0 GPa<p<4 GPa). The predicted values of the moduli and Poisson ratios under ambient
conditions are in accord with general expectations for molecular crystals and with a very recent,
unpublished determination for RDX. The moduli exhibit a sensitive pressure dependence whereas
the Poisson ratios are relatively independent of pressure. The temperature dependence of the moduli
is comparable to the precision of the results. However, the crystal does exhibit thermal softening for
most pressures. An additional product of the calculations is information about the
pressure-volume-temperature (pVT) equation of state. We obtain near-quantitative agreement with
experiment for the case of hydrostatic compression and reasonable, but not quantitative,
correspondence for thermal expansion. The results indicate a significant dependence of the thermal
expansion coefficients on hydrostatic pressure. ©2000 American Institute of Physics.
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I. INTRODUCTION

Plastic-bonded explosives~PBXs! and propellants are
highly filled composite materials comprised of grains of
energetic material held together by a polymeric binder. Th
has been an increasing effort in recent years to unders
and predict the macroscopic response of these composite
the basis of fundamental chemical, thermophysical and
chanical properties of, and interactions among, the cons
ents. This is a severe challenge due to both the large dom
of spatio-temporal scales that must be spanned and the
tinct classes of materials that must be described withi
single modeling framework.

Our main interest is in the use of atomistic methods
predict the kinds of physical and mechanical properties
quired in the formulation and parameterization of detai
mesomechanics models which describe materials at the
of interacting constituents~e.g., grains and binder in a PBX!.
These methods are increasingly used to obtain constitu
laws for continuum calculations. As mesomechanics mod
become more sophisticated, there is a need for a more c
plete description of constituent properties, e.g., specifica
of the Young’s moduli rather than the bulk modulus; a
dependencies of the thermophysical properties on temp
ture, pressure, and strain rate.

In a preceding publication, we presented isotherm
isobaric (NpT) Monte Carlo calculations of the room

a!Author to whom correspondence should be addressed; electronic
sewell@lanl.gov
880021-8979/2000/88(1)/88/8/$17.00
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temperature, hydrostatic compression of hexahydro-1,
trinitro-1,3,5-triazine ~RDX! and b-octahydro-1,3,5,7-
tetranitro-1,3,5,7-tetrazocine~b-HMX ! within an all-atom
rigid-molecule framework.1 Hydrostatic pressures of 0 GP
<p<3.95 GPa and 0 GPa<p<7.47 GPa were considere
for RDX andb-HMX, respectively, corresponding to the do
mains of phase stability of the room-temperature polymor
for those materials. Comparison of the computed results
x-ray diffraction data reported by Olinger, Roof, and Cad2

indicated good agreement for both the volumetric compr
sion and the individual crystal lattice parameters, for all pr
sures considered. These quantities are sufficient to defi
pressure-dependent bulk modulus and linear coefficient
isothermal compression.

More recently, we reported preliminary predictions
the anisotropic engineering moduli~Young’s and shear! and
Poisson ratios for crystalline RDX, for the same conditio
of temperature and hydrostatic pressure considered in
1.3 These predictions are based on formalism due to P
rinello and Rahman4 in which the elastic stiffness tenso
Ci jkl is expressed in terms of fluctuations in the elastic str
tensor^e i j ekl& for the material. The strain fluctuations we
calculated using information generated during the course
the Monte Carlo realizations described in Ref. 1. The p
dicted moduli and Poisson ratios are in reasonable agreem
with a very recent, experimental determination for RDX.5

In the present article, we report more extensive calcu
tions of the crystal lattice parameters, anisotropic Youn
and shear moduli, and Poisson ratios for RDX as function
il:
© 2000 American Institute of Physics
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both temperature and hydrostatic pressure. Specifically,
consider pressures in the domain 0 GPa<p<4 GPa and tem-
peratures betweenT5218 K and T5333 K. Also, in the
present calculations we employ recently published poten
energy surface parameters due to Sorescu, Rice,
Thompson,6–9 which were specifically calibrated for RDX6

and then shown to be transferrable to three HM
polymorphs,7 as well as to a rather large set of addition
nitramine-containing compounds.8,9

The outline for the remainder of the article is as follow
In Sec. II we briefly describe isothermal-isobaric Mon
Carlo, the potential-energy surface used, and pertinent c
putational details. We then summarize the fluctuation f
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mula from which the elastic coefficients, and hence the
gineering parameters, are extracted. The results
accompanying discussion are provided in Sec. III. Fina
we summarize our conclusions and comment on directi
for future work.

II. COMPUTATIONAL METHODS

A. Isothermal-isobaric Monte Carlo

The results were obtained using isothermal-isoba
(NpT) Monte Carlo methods. For a system ofN rigid mol-
ecules, the ensemble average of macroscopic prop
A(N,p,T) is therefore given by10–12
^ANpT&5
*dh*ds*dQA~s,Q;V~h!!e2b[UN(s,Q)1pV(h)2 ~N/b! ln V(h)]

*dh*ds*dQe2b[UN(s,Q)1pV(h)2 ~N/b! ln V(h)] , ~1!
are

o
a
i-
-

ial
ula-

ing

a-

and
X.
nd
be

f

wheres andQ are the molecular positions and orientation
respectively;UN is the potential energy in terms of thos
variables;V is the volume;p is the scalar pressure; andb
51/kT. The positions and orientations in Eq.~1! are written
in scaled coordinates, related to Cartesian coordinatesq by
the transformationq5hs, where h is the upper triangular
matrix which transforms between the two coordinate s
tems. The columns ofh are the lattice vectorsa, b, andc; the
elements ofh specify the size (V5deth) and shape of the
volume under consideration.

The Monte Carlo estimate to Eq.~1! is the arithmetic
average of the microscopic function of configurati
A(s,Q;V) which is taken over the states of a Markov cha
in the configuration space of the system

A~N,p,T!5 lim
M→`

1

M (
m51

M

A~sm ,Qm ;Vm!, ~2!

where the transition matrix between successive state
based on the potential energiesUN(sm ,Qm) in such a way as
to assure detail balance and the equality ofA(N,p,T) with
the actual ensemble average given above. The indepen
variables are the 6N molecular positions and orientation
plus the six nonzero elements ofh.

In this work, the Markov chain was generated using
Metropolis algorithm13 in which trial moves are accepte
with probability P5min@exp(2D),1#, where, for presen
statem and ‘‘trial’’ state m1110

D5b$@UN
m112UN

m#1p@Vm112Vm#%

2N ln~Vm11/Vm!. ~3!

B. Potential-energy surface

The intermolecular potentials used are of the form
,

-

is

ent

a

U~R!5(
A

(
B.A

(
i PA

(
j PB

@U rep~Ri j !1Udisp~Ri j !

1Uelec~Ri j !#, ~4!

whereA andB are molecules, andi and j denote particular
atoms. The repulsion, dispersion, and electrostatic terms
written as

U rep5Ai j e
2Bi j Ri j , ~5!

Udisp52Ci j /Ri j
6 , ~6!

Uelec5qiqj /Ri j , ~7!

whereA, B, C, andq were taken from recent work due t
Sorescu, Rice, and Thompson.6 Those workers developed
set of potential parameters specifically for RDX by optim
zation ofA andC for N-N and O-O interactions, using pa
rameters due to Williams and co-workers14,15 for all remain-
ing X-X repulsion and dispersion interactions. Part
charges were obtained from an electronic structure calc
tion for the RDX asymmetric unit~one molecule! in the gas
phase. Parameters for X-Y interactions were defined us
traditional combination rules.

Although there are alternative functional forms and p
rametrizations forC, H, N, and O in the literature,16–18

including one developed for flexible HMX,18 the set of re-
pulsion and dispersion parameters due to Sorescu, Rice,
Thompson is the only one specifically calibrated for RD
Moreover, this set, taken together with molecule- a
polymorph-specific partial charges, has been shown to
transferable to HMX polymorphs7 as well as to a large set o
additional nitramine-containing molecular crystals.8,9 All po-
tential parameters are provided in Ref. 6.
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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C. Strain fluctuations, elastic coefficients, and
engineering moduli

In the theory of linear elasticity, the second-rank stre
and strain tensorss and e are related through the elast
stiffness tensorC by19

s i j 5Ci jkl ekl , ~8!

where i , j ,k,l P1,2,3. The inverse of the stiffness tensor
known as the compliance tensor,S5C21.

Parrinello and Rahman4 have shown that the fluctuation
in the elastic strain provide a direct measure of the isoth
mal compliance for a general anisotropic medium throu
the relation

Si jkl 5^e i j ekl&
^V&
kT

, ~9!

where^V& is the mean volume and̂e i j ekl& is the outer prod-
uct of the strain tensor with itself. The strain tensore is given
by

e5 1
2 ~h08

21Gh0
2121!, ~10!

whereh0 is the reference state of the sytsem andG5h8h is
the metric tensor. A prime (8) indicates a matrix transpose

The compliance in Eq.~9! is a fourth-rank tensor com
prised of 81 elements. However, by taking advantage of
symmetry ofe, S can be rewritten in contracted~second-
rank! form20

S5S M1 M2

M3 M4
D , ~11!

where

M15S S1111 S1122 S1133

S2211 S2222 S2233

S3311 S3322 S3333

D , ~12!

M25S S11231S1132 S11131S1131 S11121S1121

S22231S2232 S22131S2231 S22121S2221

S33231S3332 S33131S3331 S33121S3321

D ,

~13!

M352S S2311 S2322 S2333

S3111 S3122 S3133

S1211 S1222 S1233

D , ~14!

M452S S23231S2332 S23131S2331 S23121S2321

S31231S3132 S31131S3131 S31121S3121

S12231S1232 S12131S1231 S12121S1221

D .

~15!

For an orthotropic material,21 S assumes the form

S5S A 0

0 BD , ~16!

where
Downloaded 12 May 2004 to 128.165.156.80. Redistribution subject to A
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A5S 1/E1 2n21/E2 2n31/E3

2n12/E1 1/E2 2n32/E3

2n13/E1 2n23/E2 1/E3

D ~17!

and

B5S 1/G23 0 0

0 1/G31 0

0 0 1/G12

D ~18!

contain the Young’s moduliEi and Poisson ratiosn i j , and
shear moduliGi j , respectively.

Thus, the desired engineering coefficients can be
tained from anNpT Monte Carlo realization by calculation
of the fluctuations of the strain tensor, expressed in term
the instantaneous scaling matrixh and reference stateh0 ~de-
fined as the element-wise arithmetic average ofh determined
from the realization!.

D. Other computational details

At room temperature and atmospheric pressure, R
crystallizes in the orthorhombic space group Pbca witha
513.182 Å, b511.574 Å, c510.709 Å, andZ58 mol-
ecules per unit cell.22 We included this number of molecule
in our primary simulation cell, using the measured struct
to define the molecular geometry and initial crystal structu
Periodic boundaries were used to simulate the infinite so
and all interactions between molecules having center
mass separations of 20 Å or less were included in the ene
evaluations.

One Monte Carlo cycle was defined to consist of fi
attempted rotations and translations per molecule plus
attempted variations in the size and shape of the prim
simulation cell. Maximum displacements were adjusted
yield approximately a 50% acceptance probability for ea
kind of move. A complete realization consisted of 500 d
carded warm-up cycles followed by a sequence of 10 0
production cycles. The final configuration from one realiz
tion was used as the initial configuration for the next. T
thermodynamic states for two successive realizations w
required to differ by~at least! either 60 K and 1.0 GPa or 30
K and 2.0 GPa.

Uncertainties reported below for lattice parameters c
respond to the standard deviation of the mean, obtained f
statistically independent subaverages computed along
Markov chain. The battery of analyses described by Ha23

was used to determine a suitable length for the coa
grained observations. Uncertainties for the moduli and P
son ratios were obtained using a bootstrap method24 in which
the 10 000 Monte Carlo observations ofh for a given (p,T)
state were sampled randomly~with replacement! in batches
of 2500 to obtain the compliance tensor, assuming that
sample pool of observations is representative of the pop
tion. Mean values and variances of the elements of the c
pliance tensor were obtained on the basis of 100 of th
‘‘bootstrap cycles.’’ Finally, standard error propagation tec
niques were used to obtain uncertainties for the ela
moduli and Poisson ratios derived from the compliance t
sor @Eqs. ~16!–~18!#. The error bars obtained in this wa
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Downloaded 12 Ma
TABLE I. Calculated stiffness matrix~GPa! and relative valuesCi j /C11 for the caseT5276 K, p52.0 GPa.
Relative values are in parentheses in the bottom half of the matrix structure.

49.570 14.310 17.690 0.187 20.215 20.313
44.291 16.417 20.462 0.209 20.188

~1.000! 40.162 20.227 20.380 20.054
~0.289! ~0.894! 13.186 0.304 20.235
~0.357! ~0.331! ~0.810! 9.754 20.198
~0.004! (20.009) (20.005) ~0.266! 12.018

(20.004) ~0.004! (20.008) ~0.006! ~0.197!
(20.006) (20.004) (20.001) (20.005) (20.004) ~0.242!
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were found to be relatively insensitive to the precise val
chosen for the bootstrap parameters. In all cases, error
correspond to one standard deviation.

III. RESULTS AND DISCUSSION

We have performed rigid-molecule isothermal-isoba
Monte Carlo realizations for crystalline RDX in order to e
tract the isothermal compliance tensor and hence the an
tropic engineering coefficients. A set of temperatures a
hydrostatic pressures relevant to the development of
proved mesomechanical descriptions of energetic mate
under weak to moderate stress loading was considered
additional benefit of the calculations is new pressu
volume-temperature (pVT) equation of state information
While the calculations described here were performed in
rigid-molecule approximation, previous agreement1 with ex-
periment using a similar potential-energy parametrizat
suggests that this is not too severe an approximation for
quantities discussed below.
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A. Elastic constants and derived parameters

The calculated stiffness matrix for~p52.0 GPa, T
5276 K! is given in Table I. Also included in Table I is th
ratio Ci j /C11. (C11 is the largest element ofC for the case
considered.! Since the matrix is symmetric, only the upp
half is shown. It is seen that the form expected for orthot
pic materials@Eqs.~16!–~18!# is well satisfied.25 Each of the
elements that should be zero for an orthotropic material i
most 5% of the smallest formally nonzero one, and mos
them are much smaller. Similar results were obtained
other pressures and temperatures.

The calculated elastic moduli are collected in Table
Plots of the pressure dependence (T5276 K) and of the tem-
perature dependence (p50.0 GPa) are shown in Figs. 1 an
2. The magnitudes of the Young’s and shear moduli~Ei and
Gi j ! at zero pressure are reasonable for organic molec
solids, and are seen to increase dramatically with increa
hydrostatic pressure~Fig. 1!. This is expected due to th
significant (;15%) bulk compression that occurs at th
re
TABLE II. Calculated Young’s and shear moduli asf (p,T). Units are GPa. Uncertainties in the last digit a
in parentheses.

T ~K! p ~GPa! E1 E2 E3 G23 G31 G12

218 0.0 27.3~8! 27.0~8! 17.4~4! 9.6~3! 6.0~2! 9.1~3!
1.0 30.3~8! 33.1~9! 28.2~8! 13.0~3! 8.5~2! 11.8~4!
2.0 39~1! 35~1! 31.0~8! 12.0~3! 9.5~3! 12.3~4!
3.0 65~2! 63~2! 41~1! 20.7~5! 11.2~3! 21.3~6!
4.0 72~2! 85~3! 71~2! 25.4~7! 19.0~5! 26.2~8!

247 0.0 26.0~7! 25.5~7! 16.6~4! 9.1~3! 5.5~2! 8.9~3!
1.0 32.5~8! 33~1! 29.3~8! 12.9~4! 8.1~2! 12.0~4!
2.0 38~1! 36~1! 28.8~8! 13.5~4! 9.3~3! 12.4~4!
3.0 63~2! 59~2! 41~1! 19.7~6! 11.3~3! 20.6~6!
4.0 70~2! 83~3! 62~2! 26.3~6! 17.1~5! 26.7~7!

276 0.0 24.8~8! 23.0~8! 16.9~5! 8.6~2! 5.7~2! 8.3~3!
1.0 31.6~9! 32.3~8! 29.9~8! 13.0~4! 8.2~2! 11.3~3!
2.0 40~1! 36~1! 30.6~9! 13.1~3! 9.7~3! 12.0~3!
3.0 58~2! 56~1! 41~1! 18.8~5! 11.5~3! 18.3~5!
4.0 77~2! 78~2! 64~2! 24.1~7! 16.8~5! 25.0~9!

304 0.0 24.2~7! 21.1~6! 15.4~4! 8.4~2! 5.3~2! 7.6~2!
1.0 29.8~8! 32.1~9! 26.6~7! 12.7~4! 8.0~2! 11.6~4!
2.0 36~1! 35~1! 29.7~8! 12.9~3! 9.5~3! 12.6~3!
3.0 58~2! 56~2! 38~1! 19.0~6! 11.4~3! 19.3~7!
4.0 70~2! 74~2! 57~2! 25.7~7! 17.2~5! 24.9~7!

333 0.0 22.2~7! 20.2~6! 14.3~4! 7.4~2! 5.1~1! 7.9~2!
1.0 31.1~9! 32.1~9! 26.0~7! 11.7~3! 7.7~2! 10.7~3!
2.0 41~1! 37~1! 31~1! 13.4~4! 9.9~3! 12.3~4!
3.0 57~2! 54~2! 40~1! 18.4~5! 11.5~3! 18.5~5!
4.0 70~2! 74~2! 56~2! 24.1~7! 16.5~4! 25.1~7!
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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highest pressures.1,2 Anisotropy among the moduli is evi
dent, although not prominently so. In particular,E3 andG31

are approximately 2/3–3/4 the values of the remain
Young’s and shear moduli. The relative increases in
shear moduli with pressure are smaller than for the Youn
moduli. The temperature dependence of the moduli is r
tively weak~Fig. 2!, and is near the limit of precision of ou
calculations. However, in most cases, the moduli decre
with increasing temperature~Table II!.

The six Poisson ratios~n! are tabulated in Table III.
Plots of the pressure and temperature dependence of tw
them ~n21 and n13! are provided in Fig. 3. For clarity o
presentation, the results for each successive temperatur

FIG. 1. The calculated Young’s and shear moduli for RDX are shown a
function of hydrostatic pressure for a fixed temperature ofT5276 K. Indi-
vidual moduli are identified in the figure legend.
Downloaded 12 May 2004 to 128.165.156.80. Redistribution subject to A
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offset by 0.025 GPa from the preceding one. The qualita
features ofn21 and n13 are representative of the remainin
four. The relative uncertainties forn i j are significantly larger
than for eitherEi or Gi j , and the temperature dependence
not resolved in the present calculations. Differentn i j appar-
ently have distinct pressure dependencies, including stat
cally significant non-monotonicities. There is a weak po
tive pressure dependence in the ‘‘isotropic’’ Poisson ra
defined as the arithmetic average over all sixn i j and all five
temperatures, as shown by the bold dot-dash line in Fig.

For an isotropic material, the bulk modulusK is given
by

aFIG. 2. The calculated Young’s and shear moduli for RDX are shown a
function of temperature for a fixed hydrostatic pressure ofp50.0 GPa. In-
dividual moduli are identified using the same scheme as in Fig. 1.
TABLE III. Calculated Poisson ratios asf (p,T). Uncertainties in the last digit are in parentheses.

T ~K! p ~GPa! n21 n31 n12 n32 n13 n23

218 0.0 0.20~2! 0.17~2! 0.20~3! 0.19~2! 0.27~3! 0.30~3!
1.0 0.24~3! 0.32~3! 0.22~3! 0.21~2! 0.34~3! 0.25~3!
2.0 0.18~3! 0.27~2! 0.20~3! 0.29~3! 0.34~3! 0.33~3!
3.0 0.22~3! 0.20~2! 0.22~3! 0.27~2! 0.31~3! 0.42~4!
4.0 0.31~3! 0.25~3! 0.26~3! 0.25~3! 0.25~3! 0.31~3!

247 0.0 0.17~2! 0.20~2! 0.18~2! 0.19~2! 0.31~4! 0.29~3!
1.0 0.23~3! 0.25~3! 0.23~3! 0.25~3! 0.28~3! 0.28~3!
2.0 0.19~2! 0.29~3! 0.20~2! 0.28~2! 0.38~3! 0.35~3!
3.0 0.21~2! 0.20~2! 0.22~3! 0.27~2! 0.31~3! 0.39~4!
4.0 0.29~3! 0.26~3! 0.25~3! 0.22~3! 0.30~3! 0.29~3!

276 0.0 0.19~3! 0.15~2! 0.20~3! 0.22~2! 0.22~3! 0.30~3!
1.0 0.25~3! 0.27~3! 0.24~3! 0.25~3! 0.28~3! 0.27~3!
2.0 0.17~2! 0.28~3! 0.19~3! 0.28~3! 0.36~4! 0.33~3!
3.0 0.21~3! 0.24~2! 0.22~3! 0.27~2! 0.33~3! 0.36~3!
4.0 0.24~3! 0.22~3! 0.24~3! 0.28~3! 0.26~3! 0.34~4!

304 0.0 0.17~2! 0.16~2! 0.20~3! 0.22~3! 0.25~4! 0.30~4!
1.0 0.25~3! 0.29~3! 0.23~3! 0.22~3! 0.33~3! 0.27~3!
2.0 0.20~3! 0.32~3! 0.20~3! 0.28~3! 0.38~4! 0.33~4!
3.0 0.17~2! 0.25~2! 0.18~2! 0.29~2! 0.38~4! 0.43~4!
4.0 0.28~3! 0.24~3! 0.27~3! 0.28~3! 0.29~3! 0.36~3!

333 0.0 0.16~2! 0.18~2! 0.18~3! 0.20~2! 0.28~3! 0.28~3!
1.0 0.23~3! 0.23~3! 0.23~3! 0.25~3! 0.28~3! 0.31~3!
2.0 0.18~2! 0.26~3! 0.20~3! 0.28~3! 0.34~3! 0.34~3!
3.0 0.20~2! 0.25~2! 0.21~3! 0.28~3! 0.35~3! 0.38~4!
4.0 0.26~3! 0.27~2! 0.24~3! 0.25~2! 0.33~3! 0.33~3!
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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K5
E

3~122n!
.

If, for the caseT5304 K andp50.0 GPa, we compute th
arithmetic average of the Young’s moduli and Poisson ra
to obtain isotropic valuesE520.2 GPa andn50.22, then we
predict a zero-pressure bulk modulus ofK512 GPa, in good
agreement with the experimental valueKexpt513.0 GPa due
to Olinger, Roof, and Cady.2 The entire set of elastic con
stants for RDX has been measured very recently, and
appear in a forthcoming publication.5 The comparison be

FIG. 3. The calculated Poisson ratiosn21 andn13 for RDX are shown as a
function of hydrostatic pressure~abscissa! and temperature~parametric vari-
able!. Values for successively higher temperatures at a given pressur
offset from one another by 0.025 GPa for clarity of presentation. The he
dot-dash line is the average of all six Poisson ratios, and over all five t
peratures, at a given pressure.
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ill

tween experiment and calculation~T5304 K, p50.0 GPa! is
favorable but not outstanding. The resulting anisotro
Young’s and shear moduli are 130% and 116% of the
spective experimental values~Voigt averages!; the average
Poisson ratio is 80% of the experimental number. Althou
the elastic moduli we predict are somewhat larger than
experimental values, this is evidently balanced by a sma
Poisson ratio, to yield a bulk modulus within 4% of expe
ment.

B. The pVT equation of state and derived parameters

The pV equation of state for RDX has been measur
(T5295 K, 0 GPa<p<9.19 GPa) by Olinger and
co-workers.2 A phase transition was identified above 4 GP
but the structure of the high-pressure polymorph has ye
be determined ~although it has been studie
spectroscopically26!. Here we present calculated unit ce
volumes and lattice lengths for 25 uniformly spacedp-T
pairs (0.0 GPa<p<4.0 GPa and 218 K<T<333 K!. We do
not report lattice angles since the averages never deviate
nificantly from 90°. The results, which are collected in Tab
IV, are sufficient to allow for predictions of linear and volu
metric coefficients of isothermal compressibility and therm
expansion on thep2T surface. Values for some of these a
contained in Tables V and VI, where we also include t
available experimental data. For purposes of compariso
the remainder of this section, the calculated results w
standardized to a temperature ofT5295 K. Values corre-
sponding toT5295 K were obtained using least square fi
of the lattice parameters asf (T;p). In cases where hydro
static compression results are compared to experiment
ignore the 0.05 GPa difference between the two.

re
y
-

n
TABLE IV. Calculated lattice lengths and unit cell volume asf (p,T). Uncertainties in the last digit are give
in parentheses.

T ~K! p ~GPa! a ~Å! b ~Å! c ~Å! Volume (Å3)

218 0.0 13.376~3! 11.715~2! 10.706~3! 1676.9~3!
1.0 13.160~4! 11.529~1! 10.458~3! 1586.1~3!
2.0 12.974~4! 11.365~2! 10.310~3! 1519.7~3!
3.0 12.859~3! 11.255~1! 10.172~2! 1472.0~2!
4.0 12.775~3! 11.203~1! 10.065~2! 1440.3~1!

247 0.0 13.389~3! 11.730~2! 10.720~4! 1682.9~3!
1.0 13.166~3! 11.537~2! 10.462~3! 1588.6~3!
2.0 12.979~5! 11.374~2! 10.314~3! 1522.1~3!
3.0 12.866~3! 11.261~2! 10.175~2! 1473.9~2!
4.0 12.774~3! 11.203~1! 10.076~2! 1441.7~1!

276 0.0 13.400~3! 11.741~2! 10.739~4! 1688.6~4!
1.0 13.169~4! 11.545~2! 10.472~3! 1591.5~3!
2.0 13.004~4! 11.382~2! 10.311~3! 1525.6~3!
3.0 12.875~4! 11.268~2! 10.180~3! 1476.4~2!
4.0 12.785~2! 11.203~1! 10.076~2! 1443.0~2!

304 0.0 13.410~3! 11.758~2! 10.756~4! 1694.8~4!
1.0 13.176~5! 11.552~2! 10.483~4! 1594.8~3!
2.0 12.994~5! 11.390~2! 10.324~4! 1527.5~3!
3.0 12.873~4! 11.273~2! 10.190~3! 1478.2~2!
4.0 12.790~3! 11.205~2! 10.083~3! 1444.6~2!

333 0.0 13.424~3! 11.775~2! 10.771~5! 1701.4~5!
1.0 13.178~4! 11.562~2! 10.495~4! 1598.2~3!
2.0 13.020~4! 11.395~2! 10.323~3! 1530.9~3!
3.0 12.881~4! 11.280~2! 10.190~3! 1480.1~2!
4.0 12.786~3! 11.210~1! 10.093~2! 1446.2~2!
IP license or copyright, see http://jap.aip.org/jap/copyright.jsp
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Downloaded 12 Ma
TABLE V. Illustrative parameters pertaining to isothermal compression.

a ~Å! b ~Å! c ~Å! V (Å 3)
p ~GPa! Calc.a,b Expt.a,c Calc.a,b Expt.a,c Calc.a,b Expt.a,c Calc.a,b Expt.a,c

0.0 13.407 13.20 11.754 11.60 10.750 10.72 1693.0 164

a/a0 b/b0 c/c0 V/V0

T ~K!d Calc. Expt.c Calc. Expt.c Calc. Expt.c Calc. Expt.c

218 0.955 ¯ 0.956 ¯ 0.940 ¯ 0.859 ¯

295b 0.954 0.960 0.954 0.942 0.938 0.936 0.853 0.84
333 0.952 ¯ 0.952 ¯ 0.937 ¯ 0.850 ¯

aT5295 K.
bObtained from linear least squares fit.
cReference 2.
dFor a pressure of 4 GPa.
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The isothermal compression is in good agreement w
the experimental data~Table V!. Specifically, the percen
errors in the calculated lattice lengths and unit cell volume
p50.0 GPa are 1.6%, 1.3%, and 0.3% fora, b, andc, re-
spectively, and 3.1% for the unit cell volume. A comparis
of the linear and volumetric compressionx/x0 @where x
5a,b,c, or V, x5x(p), and x05x(p50)# along the T
5295 K isotherm yields errors of20.6%, 1.3%, and 0.2%
for the lattice lengths, and 0.8% for the unit cell volum
Temperature effects on the hydrostatic compression
small for the temperature domain considered: the aver
percent difference inx/x0 for the two limiting temperatures
is only 0.3% and 1.1% for lattice lengths and unit cell vo
ume, respectively.

The coefficient of thermal expansion~CTE! is given by
a5x21@]x(T)/]T#up . We fit our results to this using linea
regression to obtainx(T;p) and hence a temperature
dependent CTE for each lattice parameter~Table VI!. The
precision of the results does not warrant the use of a hig
order fitting form. Cady27 has measured the linear and vol
metric CTE of RDX at atmospheric pressure and expres
these quantities as a fifth-degree polynomial in temperat
The comparison to experiment is not as good as for isot
mal compression~Table VI!. Taking into account Cady’s
choice ofa, b, andc axes, and retaining only terms throug
third degree, the percent errors are 15.7%,249.1%, and
231.8% for the linear CTEs alonga, b, andc. The percent
error in the volumetric CTE is234.6%. These values ar
comparable to those given previously by Sorescu, Rice,
Thompson6 in the initial presentation of their potential set fo
RDX. We find a strong dependence of the CTE on press
as is shown at the bottom of Table VI. For example,
predict the volumetric CTE atT5295 K to decrease by a
factor of 3.5 in passing fromp50.0 GPa top54.0 GPa. Al-
though one obviously cannot make an accurate predictio
y 2004 to 128.165.156.80. Redistribution subject to A
h

t

.
re
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d
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d
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of

the absolute magnitude of the CTEs based on our results
good agreement we obtain for isothermal compression s
gests that it might be possible to map the calculated pres
dependence of the volumetric CTE onto an effective te
perature curve using a calibration that accounts for the e
in the predicted CTE.

Using neutron scattering techniques, Dick and v
Dreele28 have observed pressure-induced distortions of up
8° in torsional angles for the high explosive pentaerythri
tetranitrate~PETN! hydrostatically loaded to 4.28 GPa in
diamond anvil cell. Since both RDX and HMX have lo
frequency ~less than 200 cm21!, anharmonic molecular
modes29,30 that couple with phonon modes in the material31

the applicability of rigid molecules for the temperature
pressures, and properties of interest in the present w
needs to be more carefully assessed. We hope to addres
issue in future publications.

IV. CONCLUSIONS

Isothermal-isobaric Monte Carlo calculations were us
within an all-atom rigid-molecule framework to compute th
elastic coefficient tensorCi jkl and derived anistropic engi
neering moduli and Poisson ratios for crystalline RDX as
function of temperature and hydrostatic pressure. The ela
coefficients were computed on the basis of formalism due
Parrinello and Rahman4 in which theCi jkl are obtained in
terms of fluctuations of the strain tensor. An additional pro
uct of the calculations is newpVT equation of state infor-
mation from which quantities such as linear and volume
coefficients of isothermal compression and thermal exp
sion can be obtained.

Assuming an orthotropic form for the compliance matr
~a legitimate assumption!, we computed the Young’s an
shear moduli, and the Poisson ratios as a function of hyd
static pressure and temperature in the domain 0 GPa<p
TABLE VI. Coefficients of thermal expansion. The temperature isT5295 K.

aa (°C21) ab (°C21) ac (°C21) aV (°C21)
p ~GPa! Calc. Expt.a Calc. Expt.a Calc. Expt.a Calc. Expt.a

0.0 3.0231025 2.6131025 4.4231025 8.6831025 5.3631025 7.8631025 1.2531024 1.9131024

4.0 1.0131025
¯ 4.7931026

¯ 2.1531025
¯ 3.5531025

¯

aReference 27.
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<4 GPa and 218 K<T<333 K. The results for room tem
perature and pressure are in reasonable, though not outs
ing, agreement with a very recent, unpublished experime
determination of these quantities for RDX.5 The moduli are
predicted to increase significantly at higher pressures, wh
is physically sensible given the;15% compression that oc
curs at the upper end of the pressure domain considered.
results indicate thermal ‘‘softening’’ of the crystal as th
temperature is increased, although the extent of this sof
ing is not monotonic with pressure, nor is it well resolved
all circumstances.

The calculated linear and volumetric isothermal co
pressionT5275 K is in good agreement with experiment
results, with errors of 3% or less. The temperature dep
dence of these quantities is predicted to be small over
domain studied. By contrast, the coefficients of thermal
pansion~CTEs! are not in close agreement with experime
Errors in the linear CTEs range from249.1% to115.7%,
while that for the volumetric CTE is234.6%. This discrep-
ancy has also been noted by the developers of the pote
set used, and may arise in part due to the use of rigid m
ecules. We find a rather large pressure dependence o
CTEs, ; a factor of 3–5 in passing fromp50 GPa top
54 GPa at constant temperature.

Calculations similar to those described here are un
way for HMX. Future investigations are planned to explo
the limits of temperature and pressure for which the assu
tion of rigid molecules is valid.
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